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Abstract: Generalized Linear Mixed Models (GLMMs) can be used to model the occurrence of defaults in a loan or bond 

portfolio. In this paper, we used a Bernoulli mixture model, a type of GLMMs, to model the dependency of default events. 

We discussed how Bernoulli mixture models can be used to model portfolio credit default risk, with the probit normal 

distribution as the link function. The general mathematical framework of the GLMMs was examined, with a particular focus 

on using Bernoulli mixture models to model credit default risk measures. We showed how GLMMs can be mapped into 

Bernoulli mixture models. An important aspect in portfolio credit default modelling is the dependence among default events, 

and in the GLMM setting, this may be captured using the so called random effects. Both fixed and random effects influence 

default probabilities of firms and these are taken as the systemic risk of the portfolio. After describing the model, we also 

conducted an empirical study for the applicability of our model using Standard and Poor’s data incorporating rating category 

(fixed effect) and time (random effect) as components of the model that constitute to the systemic risk of the portfolio. We 

were able to find the estimates of the model parameters using the Maximum Likelihood (ML) estimation method. 

Keywords: Portfolio Credit Risk, Generalized Linear Mixed Models, Bernoulli Mixture Models, Dependency,  

Risk Measures 

 

1. Introduction 

From the literature, there is enough evidence that credit 

default events show significant dependence. One of the 

stylized facts about credit default data is that periods with 

many defaults are generally preceded and followed by other 

periods with many defaults and this has been presented 

clearly in McNeil and Wendin [1]. Credit contagion is 

another issue of interest that affects credit defaults; Egloff [2] 

and Gieseck and Weber [3, 4] for detailed discussions. Credit 

contagion refers to the propagation of economic distress from 

one firm to another. In a way, a company may itself face 

increased risk if one of its major customers default. Financial 

institutions lending money or holding credit-risky assets are 

keen to capture dependent defaults since a disproportionately 

high number of defaults within a set time period can have 

serious consequences. 

The Basel Committee on Banking Supervision (BCBS) 

released the Basel III Accord in 2011 which encourages 

banks to create "in-house" risk models that can improve their 

ability to anticipate and withstand financial and economic 

stress. A core input to modern credit risk modelling and 

managing techniques is probabilities of default for each 

obligor and also default correlation. As such, the accuracy of 

the default probability and default correlation estimations 

will determine the quality of the results of any credit risk 

model. The models have to be calibrated for the specific 

portfolio of assets held by a bank. Bangia [5] asserted that 

knowing the distributions of economic variables and the 

probabilities that characterize their dynamics will help tailor 

risk models to a bank's needs even further. By ignoring 

unexpected outcomes for the composition of assets in a 

portfolio, the underlying credit events assessing credit 
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riskiness of the portfolio in question can be restricted. 

On the one side, we want to develop default credit risk 

models that can resolve the problem of cross-sectional 

dependency in default rates over time due to common 

economic conditions (the so-called systematic risk). On the 

other hand, we want to capture the serial dependency induced 

by the cyclical behavior of economic factors. Most portfolio 

credit risk models start with the assumption that conditional 

on the economic factors, obligor default occur independently. 

As a result, the systematic risk of a portfolio would be a 

major concern of ours. 

The class of generalized linear mixed models (GLMMs), 

which includes the Bernoulli mixture models, can be used to 

model both observed and unobserved elements of the 

systemic risk. The Credit Risk+ model for Credit Suisse [6] 

is one of the industry models that belongs to the class of 

generalized linear mixed models. As we'll see, well-chosen 

fixed and random effects provide a lot of model flexibility, 

allowing us to capture time-inhomogeneity in default rates as 

well as heterogeneity through individual obligors, credit 

rating categories, industry sectors, and any other desired 

groupings. 

In this paper, we show how economically meaningful 

assumptions about the underlying factors causing defaults of 

obligors can be used to produce restrictions on cross-obligor 

default correlations using a Bernoulli mixture model. We 

show how these constraints can be applied by estimating 

model parameters from historical default data using 

maximum likelihood methods. We investigate the small 

sample properties of these estimators and apply them to 

credit rating default data from the S & P 500 database. 

2. Methods 

2.1. Portfolio Notations 

We consider a portfolio of d obligors d	 > 	0 and fix the 

time horizon T. Let X	 = 	 �X�, … , X��
  be a d-dimensional 

vector with continuous distribution functions F��x�i� 	=	P�X� ≤	x��.	Let the random variable X� for 1 ≤ 	i ≤ 	d	to be 

the asset value of the i�� obligor and we assume that default 

occurs when the asset X� is less than the total liabilities ��  of 

the ���  obligor. We assume that the default dependence 

among obligors stems from the dependence among the 

components of the vector X. We introduce another random 

variable ��  which is a state indicator for the ���  obligor. 

Assume ��  take integer values in the set 

{0, 1, … , n	}	 representing credit rating classes; we interpret 

the value 0 as default and non-zero representing states of 

increasing credit worthiness. We assume that at time ! = 0 

all obligors are at non-default state. We concentrate on the 

binary outcomes of default and non-default and ignore the 

fine categories of the non-defaulted obligors. We write "� for 

the default indicator variables; Y� 	= 	1	if and only if S� 	=	0	and Y� 	= 	0	if and only if	S� 	> 	0. Then the random vector 

Y	 = 	 �Y�, … , Y��′	 is a vector of default indicators for the 

portfolio and our interest is to devise a mathematical model 

for the joint probability function 

p�y� = ℙ�Y� = y�, … , Y� = y��, y ∈ 	 {0, 1}�	      (1) 

and the marginal default probability p� = ℙ�Y� = 1�.	 In 

particular, we want to model the default correlation ρ+�Y�, Y,� 

for �	 ≠ ..	Since 

/�Y�� = 0�Y�1� − p�
1 	= 0�Y�� 	−	p�

1 	= 	p� 	− 	p�
1,   (2) 

and 

Cov6Y�, Y,7 = 0�Y� − 0�Y����Y, − 06Y,7� = 0�Y�Y,� − 	p	�	p,. 
For	�	 ≠ ., we have that 

	896"� , ":7 = 	 069;9<7=>̅;	>̅<
@�>̅;=>̅;A��>̅<=>̅<A�

                     (3) 

Default risk is mostly generated by associated defaults at 

the portfolio level. Default correlation is heavily influenced 

by a variety of parameters related to default risk. In a paper 

by Molins and Vives [7], it is well demonstrated that at a 

certain threshold, a small shift in default correlation can 

trigger credit portfolios or the whole market system to suffer 

a phase transition, such as the collapse of credit portfolios or 

the whole market system. 

2.2. Bernoulli Mixture Models 

We begin by giving the definition of Bernoulli mixture 

models. Let B� = �B�,� … ,BC,��′ be a D-dimensional random 

vector. Then we say that the vector "� = �"�,� , … , "E,��′ 
follows a Bernoulli mixture model with factor vector B�  if 

there are functions F�,�: ℝC → [0, 1] for 1 ≤ � ≤ L, such that 

conditional on B� , the components of "�  are Bernoulli 

random variables with success probability F�,��M�� =
ℙ6"�,� = 1NB� =	M�7. In this setting, the subscript ! denotes 

time period and the random vector B�  denotes the vector of 

risk factors. In these types of models, we assume that the 

default risk of an obligor depend on the set of risk factors 

(eg. climatic, geographic, economic, etc) and these factors 

can also be modelled stochastically. We also assume that if 

we know the realizations of the risk factors, then the default 

of the individual obligors are independent. The dependence 

between defaults is introduced by the dependence of the 

individual default probabilities on the set of risk factors. 

We let O	 = 	 {1,… , P	}  be a set of rating classes where 

higher values indicate high creditworthiness. We suppose that 

we can collect historical default data over Q  time periods 

(yearly data) for P different classes of credit rating classes 

indexed by	R	 = 	1, … , P. We denote by ST,�  the number of 

obligors for the !�� year cohort in the credit rating class R and 

UT,�  to be the number of defaulted obligors in the credit 

rating class R in the !��  year, so that S�!� = 	∑ ST,�WTX� 	and 

U�!� = 	∑ UT,�WTX�  denotes the number of obligors and 

number of defaulted obligors in the period ! respectively. We 

write "�,�  for the default indicator variables; "�,� 	= 	1	if and 

only if the ��� obligor defaults on the !�� year and "�,� 	= 	0 



 American Journal of Theoretical and Applied Statistics 2021; 10(3): 146-151 148 

 

otherwise, where 1 ≤ 	� ≤ 	S� . With this setting, for	Y	 ≠ !, 

the indicator variables "�,Z  and "�,�  do not refer to the same 

obligor and hence the vectors "� 	= 	 �"�,�, … , "[���,��′  and 

"Z 	= 	 �"�,Z, … , "[�Z�,Z�′	may not be of the same length. 

Now, given the random vector B� 	= 	 �B�,� , … , B[���,��′ 
with distribution \] ,	we assume that the default indicators 

�"�,� , … , "[���,��	 are conditionally independent Bernoulli 

random variables with success probability 

F�,��M�� = ^6"�,� = 1NB� = M�� = _6`T + b�,�c + 	d�,�′B�7.	(4) 

The vectors d�,� and b�,� are known vectors corresponding 

to the covariates of the ���  obligor in period ! , c  and 

`T = {`�, … , `W}  are vectors of unknown regression 

parameters and _  is a smooth, strictly increasing function 

taking values from ℝ to the unit interval, called the response 

function. We can easily show that the probit response 

function is a natural choice for the response function, and for 

other choices, interested readers can see Joe [8]. 

For e ∈ {0, 1}[���, the conditional joint default probability 

for the random variables "�,� , … , "[���,� is given by 

ℙ�"� = e|B� = M�� = ∏ F�,��M��h;,ij1 − F�,��M��k�=h;,i[���
�X�   (5) 

We are interested in the unconditional probability and by 

applying the De Finetti theorem on (5) (see Frey and McNeil 

[9]for a brief discussion on the De Finetti theorem), then the 

unconditional distribution is given by integrating (5) over the 

distribution of the risk factors, so we have 

ℙ�"� = e� = l ∏ F�,��M��h;,ij1 − F��,���M��k�=h;,i[���
�X� L\]�B��.�

m  (6) 

By definition of Bernoulli mixture models, we can show 

that threshold models inspired by the Merton [10] type model 

can be interpreted as Bernoulli mixture models. To show this, 

let n�,� , … , n[i,�  be independently identically distributed 

random variables with a standard normal distribution 

function o  which are also independent of B� .  Following 

Merton, we assume that default of the ��� obligor during time 

period ! occurs when its asset value p�,� is less than its total 

liabilities, then we can set	p�,� =	n�,� − b�,�
 c − d�,�
 B�. Using 

equation (4), we have that the default probability for the ��� 

obligor at time period ! is 

ℙ6n�,� − b�,�
 c − d�,�
 B� ≤ `T7 = o�`T + b�,�′	c + d�,�
 	B�� (7) 

and it is easy to see that this is a Bernoulli mixture model 

with F�,�  being the probit distribution function. In this case, 

`T is treated as the total liabilities of the ��� obligor. 

If we can be able to collect default data over a number of 

time periods, then we can statistically find the estimates of	c, 

`T = {`�, … , `W} and the so called hyperparameter q	of the 

distribution of B�  based on the realization of "�  and the 

covariates b�,� and	d�,�. To carry on with our discussion, we 

first give the following general theory about generalized 

linear mixed models. 

2.3. Generalized Linear Mixed Models 

Bernoulli mixture models are a type of GLMMs that are 

commonly used in statistics. This group of models will deal 

with data in continuous, discrete, or binary format, as well as 

data with multiple sources of random error. The CreditRisk+ 

[11] industry model fits in this general framework where the 

number of defaults, conditionally on gamma-distributed 

latent factors, is Poisson distributed. GLMM are 

characterized by (i) random effects r� with distribution s and 

hyperparameters t , (ii) a distribution from the exponential 

family for the conditional response variable "�,� given r�, and 

(iii) a response function _  (its inverse is known as link 

function) relating the systemic risk of the portfolio p�,�
 u +
v�,�
 r�  to the responses. In the absence of r� , the model is 

simply a Generalized Linear Model (GLM), see Lindsey 

[12]for concepts. 

We study the responses e�,�  and the covariates variables 

p�,�  for obligor � = 1,… ,S�!�  and year 	!	 = 	1, … , Q . We 

let	p� = �p�,� , … , p[���,��. Given a random effect vector r� of 

an arbitrary dimension w and covariates	p� , we assume that 

the conditional density of the responses e�,�  belong to the 

exponential family, such as Bernoulli or Poisson, with 

conditional mean 

06"�,�Nr�7 = ℎ6y�,�7, y�,� =	p�,�
 u + v�,�
 r� .           (8) 

For � = 1,… ,S�!�  and ! = 1,… , Q . In a GLMM model, 

the vector p�,� is designed to specify fixed effects through the 

fixed parameter vector u  and v�,�  is designed to specify 

random effects through the vector 	r� , hence the quantity 

	p�,�
 u + v�,�
 r� determines the systemic risk of the model. 

Fixed effects may be entirely obligor-specific or shared 

across the portfolio (parts of it). Time-inhomogeneity in 

default rates is caused by shared covariates that change over 

time, such as macroeconomic variables or other observed risk 

factors. Heterogeneity among obligors is created by obligor-

specific covariates, such as balance sheet data. Time-

dependent covariates that are identified at the start of time 

period ! or covariates that are realized during time period !, 

contemporaneously with the default indicators, can be 

included in the design vectors p�,�  and v�,� . In this setting, 

the vector-valued random effect r�  could have each 

component interpreted as the general state of the economy 

according to, for example, industry sector and/or 

geographical location hence its components would then 

typically be strongly correlated and the (observable) design 

vector v�,�  holds the corresponding (possibly weighted) 

exposures of obligor �. 
For the purpose of this paper, it is enough to consider the 

case where v�,� = 1	∀	�. Conditional on the random effects 

{�  the responses |� = �e�,� , … , y[���,�� on unit !  are treated 

as independent. By applying the De Finetti theorem (see 

Section 2.2), the unconditional joint distribution of |�  is 

obtained by integrating out the effect of {� 	and thus creates 

dependence among the responses |� = �e�,� , … , y[���,��  on 

unit	!. 

2.4. Maximum Likelihood Estimation of GLMMs 

According to McNeil [13], models that are used in the 
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industry (such as the KMV, CreditMetrics and CreditRisk+) 

are less formally statistical in the estimation of the model 

parameters. The reason for this is that there is not enough 

default data for higher rated firms to give reliable 

approximations of the model parameters. In this section, we 

discuss about the general framework of the maximum 

likelihood (ML) method for fitting GLMMs. There are other 

methods that have been proposed in literature (such as 

Bayesian estimation methods) but in this work, we focus on 

the ML method. 

We recall the notations used in Section (2.3). The 

unconditional density or mass function } of response vector 

e� = �e�,� , … , y[���,�� is given by 

}�e�|p� , u, t� = 	l ℙ6"�,� = e�,�Np� , u, t7}�r��Lr�ℝ~  (9) 

where w = L�S	�r�� and } is the density of r� . In order to 

catch the between year dependence of default, we assume 

that the random effects r�, … , r� are dependent. Since the "�,� 
are conditionally independent (knowingr�, … , r� ), then the 

likelihood can be written in the form 

��u, t|�� = ∏ }�e�|p�,� , u, t�[���
�X�                 (10) 

which is an ℝ>×� dimensional integral and � is the data. This 

is a high-dimensional integration and it is difficult to master 

numerically and results are often inaccurate. In that context, 

Breslow [14] suggests that numerical approximation methods 

such as the penalized quasi-likelihood (PQL) and the 

marginal quasi-likelihood (MQL) usually come in handy for 

solving this problem. Models with correlated random effects, 

on the other hand, are typically far too complicated to fit 

using numerical maximizing of the likelihood. For correlated 

random effects, alternatives such as the expectation 

maximization (EM) algorithm or simulation of the full 

likelihood function using the importance sampling technique 

might be used (see Gourieroux and Monfort [15]). 

2.5. Bernoulli Model as GLMM 

We continue with the notations we introduced in Section 

2.2. We choose the response function _  such that 

06"�,�NB�7 = o6��,�7 =: _���,��  where o  is the cumulative 

standard normal distribution and 	��,� = `T + b�,�
 c + d�,�
 B� . 

We can rewrite ��,�  in the form ��,� = p�,�′� + d�,�′B�  and 

this setup is the same as in the GLMM specification. Using 

equation (3), we have that conditional on	B� , the conditional 

default probability for the ���  obligor in the !��  period is 

given by 

ℙ6"�,� = 1NB� =	M�7 = 	o���,��                 (11) 

so that the conditional joint distribution is given by 

ℙ�"� = e�|B� =	M�� = ∑ o6��,�7h;,ij1 − o6��,�7k�=h;,i[���
�X�  (12) 

In GLMMs, the unconditional distribution of the responses 

is obtained by integrating out the effects of the random 

effects B�  (by the De Finetti theorem) and this greatly 

complicates the use of ML estimation of the parameters of 

the model (due to high dimensionality). However, full ML 

estimation is possible for simple models. In that regard, we 

consider a one factor Bernoulli mixture model with ��,� =
`T + 	b�,�
 c +	B� = p�,�� +	B�  where B� ∼ ��0, �1�  and 

B�, … , B�  are identically independently distributed random 

variables and 	d�,� = 1	∀	� . Under these assumptions, the 

likelihood is easier to compute and is given by 

��c, `, q|�� =
∑ �l ∑ ℙ6"�,� = e�,�Nc, `, b�,� , B�7}]�M��LM�[���

�X�ℝ ���X�   (13) 

We suppose that we can collect default data over specific 

time periods (yearly data) for P  different classes of credit 

ratings and let R = 1,… , P  be the credit rating classes. As 

introduced earlier, we take ST,�to be the number of obligors 

for the !�� year cohort in the credit rating class R and UT,� to 

be the number of defaulted obligors in the !��  year. The 

conditional distribution of the vector U� = �U�,� , … ,UW,�� is 

given by 

ℙ�U� = ��|B�� = ∑ �S�,���,� �W�X� o6��,�7�;,ij1 − o6��,�7k[;,i=�;,i
 (14) 

And the unconditional distribution is found by integrating 

over the distribution of the factor variable. Moreover, we 

assume that the vectors U:  and U:�  are conditionally 

independent given B�  and B�� . Under these assumptions, 

then the joint distribution of U�, … ,U� is the product of the 

marginal distribution of the vector U� so that we have 

��c, `;U�, … ,U�	� = 	∑ �∑ ��_ �S�,�U�,�� + ��_	����W�X� ���X�    (15) 

where 

�� = l �bw �∑ ��_ �o6��,�7���,i + ��_ �1 −WTX�
�
=�
	o6��,�7�[�,i=��,i	� ��M��LM�              (16) 

and ` = {`�, … , `W}, � is the standard normal density of B�  

and c is the unknown vector of regression parameters. The 

estimates of the unconditional default probabilities ����T�  for 

each obligor in the credit rating R are obtained by taking the 

expectation of ��,� =	 `̂T +	b�,�
 c +	B� , hence we have 

		���
�T� ≔ 0j`̂T +	b�,�
 c +	B�k = l ��,���M��LM� 	�

=�    (17) 

for 1 ≤ R ≤ P where � is the standard normal density of 	B�  

and within credit rating and the estimated default probability 

for a pair of obligors chosen from the credit rating R and Y is 

obtained by taking the expectation of 	o6`̂T + b�,!′ c +
B!7	o6`̂Z + b�,!′ c + B!7 hence given by 

��1
�T,Z� = 	l o�`̂�

m T + b�,�
 c + B��o6`̂Z + b�,�
 c + B�7��M��LM� (18) 

Therefore, using equation (2), the matrix of the estimated 

within credit rating and between credit rating default 

correlations has �R, Y�-element given by 
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	8�9�T,Z� = ��A��,��=�� ���	�� ���

@��� ���=�� ���A���� ���=�� ���A
                  (19) 

where the diagonal elements are the estimated with credit 

rating default correlations. 

3. Empirical Study 

This section aims at showing how the GLMM ideas can be 

implemented in practice. We give one example of a five-

different credit rating model with a binomial default counts 

using an existing software. 

3.1. Source of Data 

The credit default data that has been used in this paper was 

retrieved from the S & P 500 database. The default counts 

have been collected for one year periods, ranging from 

January 1981 to December 2000 (Q = 20). The credit rating 

classes that were considered include A, B, BB, BBB and 

CCC hence P	 = 	5. Obligors in high rating classes hardly 

default, as such, including them in this paper would not serve 

the purpose of the study. Table 1 shows the total number of 

obligors for each credit rating class together with the number 

of defaulted obligors in the 20-year period. 

3.2. Results 

Figure 1 shows plots of time periods against the default 

rates of each obligor. For each credit rating class we 

calculated the default rate (DefRate) for all the periods 

! = 1,… , 20 using 

��}£¤!� = 	 ��,i
[�,i                             (20) 

Table 1. Total number of obligors and defaults from 1981 to 2000. 

Rating class Number of obligors Number of defaults 

A 14857 6 

BBB 10258 23 

BB 7231 91 

B 7606 403 

CCC 173 173 

Figure 1, we see that there are cyclic variations in default 

occurrences. These variations are as a result of non-obligor 

specific risk factors.  

To put it another way, the increased number of defaults 

between the recessions of 1990 and 1993 can be attributed to 

global risk factors. As expected, the lower rated classes such 

as CCC possess high default rates compared to high rated 

credit rating classes (such as A). Over the years, the default 

rate of the A credit rating class is almost zero and this is the 

reason why we considered only 5 credit rating classes since 

credit rating classes rated higher than the credit rating A 

rarely default, so we were not going to observe anything for 

their plots. 

The estimates `̂T are presented in Table 2, with w − values 

less than 2 × 10=�¥ . We have `̂ = �`̂¦¦¦ , … , `̂§� =
�−0.84, −1.69, −2.40, −2.92, −3.43� . We see that the 

estimates decrease with an increase in creditworthiness. For 

the credit rating class A, the `̂§ = −3.43 and this means that 

the credit rating class A is associated with 3.43 lower log-

odds than the other credit rating categories for default, 

compared to non-default. To find the odds ratio, we 

exponentiate estimated value as presented in Table 1. The 

odds ratio for the A credit rating class was found to be 3.2%, 

which means that for "1 unit increase" of the credit rating 

class A to a higher rating class, we expect to see 

(approximately) 96.8% decrease in the odds of the total 

number of defaulting obligors.  

 

Figure 1. Default rates of credit rating classes from 1981 to 2000. 

The same analysis applies to the other credit rating classes. 

As expected, low rated credit rating classes have very high 

odds. 

Table 2. Model parameter estimates. 

Parameters A BBB BB B CCC 

`̂T -3.43 -2.92 -2.40 -1.69 -0.84 

Standard error 0.13 0.09 0.07 0.06 0.08 

Odd ratio 3.2% 5.4% 9.0% 18.5% 43.3% 

The default probability estimates were calculated and are 

presented in Table 3. We can see that the default probabilities 

decrease with increasing creditworthiness. 

Table 3. Estimated default probabilities for each obligor. 

Parameter A BBB BB B CCC 

���T 0.0042 0.023 0.097 0.049 0.209 

Default probabilities for low rated credit classes are higher 

than those that are highly rated. Obligors with a credit rating 

C are more likely to default compared to those with a credit 

rating on A. Table 4 gives the calculated estimates for the within 

credit rating and between credit rating default correlations. 
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Table 4. Estimates of within and between credit rating default correlations. 

­�®
�¯,°�

 A BBB BB B CCC 

A 0.0004     

BBB 0.0021 0.0015    

BB 0.0013 0.0037 0.0043   

B 0.0021 0.0043 0.0057 0.0143  

CCC 0.0029 0.0157 0.0108 0.0061 0.0284 

From the table, we see that the within credit rating default 

correlations increase with decrease in credit rating class and 

visa versa. For the between credit rating default correlations, 

the estimates vary depending on the pair of credit classes 

considered. Note that the default correlations are correlations 

between event indicators for very low probability events and 

are necessarily very small. 

In [16], the same data was fitted using the Gibbs sampler 

and virtually yielding similar results. 

The hyperparameter estimate �� = 0.24 suggests that there 

is some significant variation within the random effects Ψ�. In 

our model, we have assumed that the variance of the random 

effects is the same for all firms in all years and as such, we 

might be concerned that the model does not allow for enough 

heterogeneity in the variance of the systemic risk of the 

portfolio. Moreover, while controlling credit rating classes 

and the repeated measures within the time periods, we have 

found evidence that there is an association of credit rating 

with credit default of obligors. The p values are statistically 

significant, so we can say that if there was no association of 

credit default and credit rating, then the probability of 

observing the S & P 500 data we have used in this work is 

less than 2 × 10=�¥ (almost zero). 

4. Conclusion 

This paper discusses Bernoulli mixture models (as a class 

of GLMMs) as a tool for modelling dependent credit default 

data. In Section 2 the most important concepts on model 

formulation and inference are summarized. The Bernoulli 

mixture model we looked at is relatively simple, but it allows 

for a handy formulation of systematic portfolio risk in terms 

of observed fixed effects and unobserved random effects in 

order to capture inhomogeneities in default rates throughout 

the portfolio and across time. 

We solely took into account default and non-default results 

in this study. We have also mentioned that GLMMs apply to 

a number of well-known industry models used to model 

credit defaults. It would be reasonable to incorporate 

additional random effects in the model and allow more 

heterogeneity provided we had more information on the 

industrial and geographical sectors to which the obligors 

belonged. In this way it is our intention to make this literature 

more accessible to researchers in the field of quantitative risk 

management. 
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