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Abstract: The nonlinear propagation and stability of dust ion-waves in plasma is analytically and numerically investigated. 

By using the the standard reductive perturbation method, the electrostatic potential in dusty pair-ion-electron plasma is 

modelled by cylindrical Kadomtsev-Petviashvili (CKP) equation. The soliton solutions are obtained using the direct integration 

for single soliton solution and the Hirota bilinear method to find multisoliton solution of the system. It is noticed that the Hirota 

method better illustrate the physical reality of dust pair-ion plasma since it generalizes different forms of solutions. From the 

numerical simulations, it is obseved that, the plasma parameters strongly influence the properties of the soliton solution, 

namely, the amplitude and the width. The analysis of the stability of the soliton solutions revels that the stable solution co-

propagates with seven other solutions, eigenmodes of the Legendre equation. These modes contain basic symmetry and 

axisymmetric configuration consistent with relevant experimental observations in existing experiments. 
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1. Introduction 

The electron-ion Plasma type exhibit a variety of collective 

modes due to large mass difference between the electron and 

the ion; whereas in pair-ion plasma, the masses are equal and 

the charges are opposite [1, 2]. This pair-ion-plasma has been 

widely studied for the fundamental understanding of 

environment such as ionosphere, magnetosphere, quasars, etc 

[1-17]. Examples of such plasma are: Hydogen pair-ion 

plasma produce by catalytic ionization, electron-positron 

plasma produced by introducing electron in positron plasma, 

pair-ions plasma of fullerenes ���
± 	experimentally produced 

in laboratory through the impact ionization of fullerenes [3]. 

On like other pair-ion plasma, the advantage of fullerence 

���
± 	plasma lies in its stability and greater annihilation time 

than the plasma period, making it very easy to understand the 

collective mode of such plasma [1, 3, 4]. The simplicity in 

the theoretical description of pair-ion plasma makes it very 

interesting for investigations. Recently, some authors 

demonstrated the existence of electrons in the fullerene pair-

ion plasma as a result of the experimental observation of 

acoustic waves within such plasma [1, 3, 4]. 

In the presence of dust particle such as dust acoustic (DA), 

dust ion acoustic (DIA) or dust lattice (DL), the collective 

modes of pair-ion-electron plasma can be affected [5]. A 

such plasma, called Dusty plasma (or complex, colloidal, and 

aerosol plasma) [6], is an ordinary plasma contaminated with 

a certain amount of condensed (solid or liquid) particles 

(grains). The study of dusty plasmas represents one of the 

most rapidly growing field of plasma physics [7-11]. Their 

theoretical features and applications observed in Earth 

magnetosphere, ionosphere, mesosphere, cometary tail, and 

planetary rings make them very attractive [12-16]. Various 

types of dusty pair-ion plasmas can be found both in space 

and in laboratory. Experimental observations have confirmed 

the linear and non-linear features of both dust acoustic waves 

(DAW) and dust ion acoustic waves (DIAW) [12, 17]. 

Note that, in most investigations, reductive perturbation 

method has been used for deriving the Korteweg-de Vries 

(KdV) equation in the Cartesian coordinate system with one 

dimension. This is sometimes insufficient to describe the 

physical reality in laboratory and space plasmas. Studies 
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have also been carried on the dynamic of dusty plasma in the 

two-dimensional Cartesian coordinates in order to get closer 

to reality [18]. This revealed that the amplitude of 

propagating waves is greater than those gotten in a one-

dimensional coordinate [15]. The experimental conditions 

mentioned in many laboratories show that cylindrical 

coordinates must be imposed in current work to move from 

the purely mathematical environment to a more realistic 

physical environment [19]. However, Wei-Qi Peng et al 

carried out studies on pair-ion electron plasma in cylindrical 

coordinates, where they were able to analytically demonstrate 

the propagation of breather and rogue waves soliton [3]. 

Also, in reference [4], a one dimensional Cartesian 

coordinate study of dusty pair-ion-electron plasma was 

carried out and revealed the influence of some plasma 

parameter on the soliton wave. All these studies do not give a 

clear picture of the real physical situation. Linear and 

nonlinear plasma properties, containing massive charged dust 

particles, can be significantly affected. In particular, they can 

result in the appearance of new normal modes, such as the 

dust-acoustic and dustion-acoustic waves [20]. 

In this study, we applied for the first time a polar 

coordinate system to a particular dusty pair-ion electron 

plasma model to derive the cylindrical Kadomtsev-

Petviashvili equation (CKP). We use direct integration and 

Hirota analytical techniques to solve this equation. Various 

soliton solutions describing the dynamics in dusty pair-ion 

electron plasmas are obtained. Note that, wave phenomena 

are important for heating plasmas, instabilities and 

diagnostics. The presence of dust grains significantly 

modifies the linear and nonlinear wave propagation through 

the plasma. 

The rest of the paper is organized as follows: in section II, 

we present the model and derive the CKP equation using the 

reductive perturbation method (RPM). Section III, illustrates 

the single soliton solution using direct integration; and the 

single and multi-soliton solutions by Hirota’s bilinear 

method. In section IV, we will analyze the stability of the 

solutions obtained in section III. The work end with a 

conclusion in section V. 

2. Mathematical Model 

The fundamental wave modes in a dusty plasma is 

constituted of an unmagnetized plasma made up of two 

principal modes namely the Dust ion acoustic (DIA) mode 

and the Dust acoustic wave (DAW). Magnetized plasma also 

have two principal modes known as the Electrostatic dust ion 

cyclotron wave (EDIC) and the Electrostatic dust cyclotron 

wave (EDC) [12]. To study the role of dust particle in the 

pair-ion-electron, we consider this dust particle in an 

unmagnetize pair-ion-electron plasma which generates the 

dust acoustic mode. In this model we consider the dust 

particles to be dynamic, but we ignore the gravitational effect 

and the inertia of the electrons and ions due to their masses 

[21]. We assume also that the positive, negative ions and 

electrons follow the Maxwell Boltzmann distribution 

functions given by 
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where nj(j = +; -; e) are perturbed densities of positive ion, 

negative ion and electron respectively [1]. In cylindrical 

geometry, the dust particle in dusty plasma is governed by 

the following normalize equations 
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In which eqns.(2), (3), and (4) are the continuity, 

momentum, and Poisson equations respectively. In 

equilibrium state, there is no electrical field. Hence the total 

charge is neutral at equilibrium [14] and the Poisson equation 

becomes: 

0 00 0 0e d dn n n sZ n+ −− − + =                          (5) 

The subscript d0 denotes the dust particle at equilibrium, s 

= ±1 is use to indicate the positive or negative dust particle, 

E characterizes the electric field related to the electrostatic 

potential ∅ by E = −∇	∅, Zd and vd are the charge number and 

velocity of dust particles respectively; and n+, n− and ne 

represent the densities of the ions and electrons. The 

equilibrium densities of these quantities are n+0, n−0 and ne0. 

We introduce normalized variables such that the perturbed 

velocity components (vr,vθ) are normalized by the ion 

acoustic speed of the dust particles ��	 = ��
 �	⁄ , where T+ 

is the temperature of the positive ions. The perturbed 

densities for the ions, electrons and dust particles are 

normalized with their equilibrium densities; and the 

normalized electrostatic potential becomes Φ = e∅/T+. The 

space and time variables are normalized through the Debye 

length 
0

2 2/ (4 )D d dT n Z eλ π+=  and plasma frequency 

0

2 2(4 ) /pd d d dn Z e mω π= respectively. We also define the 

following ratios /T Tβ + −= , 
00 / d dn sZ nδ −= , /T Tσ += , 

and 
00 / d dn sZ nµ += , where δ  and µ are related by 

0 0
1 /e d dn sZ nµ δ= − + . This lead to the he normalized forms 

of equations (1) to (4) expressed in cylindrical geometry as: 
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To reduce equations (6)-(10), we make use of the standard 

reductive perturbation method and re-scaling both space and 

time in the equations, the variables are labelled in power 

series of ε as: 
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Where ε (0 < ε < 1) is a small expansion parameter 

proportional to the amplitude [1, 4, 6, 12], The Taylor series 

expansions of the densities are: 
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The scaled independent variables can be define as: 
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where λ represents the normalize wave velocity. Making use 

of equation (13) we obtain the following equations: 
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Substituting equations (10)-(14) in equations (6)-(9), we 

obtain equations of various power of ε. For the lowest order 

terms of ε, the continuity and the momentum equations are 

expressed as: 
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while the Poisson equation yields: 

1 1 1 1
( 1) 0.e dn n n nδ µ δ µ− +− − + − − =              (16) 

Hence, the Boltzmann distribution of ions and electrons 

can be deduced as follows: 
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Introducing equation (17) into equation (16), we derive the 

following dispersion relation of the electrostatic dust wave of 

pair-ion-electron plasma as 

2
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λ
− − + + − =                 (18) 

For the next higher order terms of both the continuity and 

the momentum equations, we obtain: 
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while for the Poisson equation, we have: 
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Next, we rewrite equation (21) as 
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Where 
2 2
( 1)κ σ δ µ β δ µ= − − + −  

After some mathematical manipulations, we derive the 

following equation in term of Φ1 
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which denotes the cylindrical Kadomtsev-Petviashvilli 

(CPK) equation, with 
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A, B and C characterize the non linear coefficient, the 

dispersion coefficient and the weak dispersion coefficient 

respectively. It is important to remark that, if we neglect the 

Y dependence, the CKP equation (23) is reduce to the one 

dimension KDV equation [4]. 

Making use of the following mapping 
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The CPK equation (23) can be reduced to an ordinary 

Kadomtsev-Petviashvilli (KP) equation given  
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Figure 1. Representation of the non linear coefficient A, the dispersion 
coefficient B and the weak dispersion coefficient C profiles in function of β 

for two differents values of σ; σ = 0.001 (black line) and σ = 10 (red line) 

(Figure 1a-1c) and in function of σ for two differents values of β; β = 3 
(black line) and β = 5 (red line) (Figure 1e-1g). The others parameters used 

are: a=b=1; u=8; s=1; Zd = 1; nd0 = 0.05n−0; ne0 = 0.05n−0; 0

0d d

n

n sZ
δ −=

and 0

0

1 e

d d

n

n sZ
µ δ= − + . 

Figure 1, shows the profiles of the coefficients A, B and C 

as function of the dusty plasma parameters β and σ. Figure 1a 

and 1c indicate that A and C increase with respect to β, while 

in figure 1b, B decreases as β increases for two different fixed 

values of σ. This physically point out that an increase in 

temperature of positive ions relative to negative ions, 

strengthen the nonlinearity (characterized by A) and weak 

dispersion (characterized by C) at the detriment of the 

dispersion coefficient (i.e. B). Figure 1e presents an increase 

in B while in figure 1d and 1f a decrease of A and C with 

respect to σ for two fixed values of β is observed. That is, the 

nonlinearity and weak dispersion are reduced for a 

decreasing temperature of electrons. Hence, with a suitable 

choice of the dusty plasma parameters we can have a perfect 

compensation between non linearity and dispersions leading 

to solitary wave’s propagation in the milieu. 

3. The CPK Equation Solutions 

We aim at this point to fine solitary wave solutions of the 

CKP equation. For this reason, by making choice of a 

suitable change of frame with speed u, equation (25) can be 

transform to following form: 

3 2
2 4 21 1 1 1
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0 ,a u Aa Ba Cb

ξ ξ ξ ξ ξ
 ∂Φ ∂Φ ∂ Φ ∂ Φ∂ − + Φ + + =  ∂ ∂ ∂ ∂ ∂ 

 (26) 

Where aX bY uξ τ′ ′ ′= + −  

 
Figure 2. Three-dimensional representation of the electrostatic potential 

profile in cylindrical geometry at two differents times τ  = 0 and τ  = 0.03: 

The parameters used are: a = b = 1; u = 8; s = 1; Zd = 1; β = 1; σ = 0.01; 

nd0 = 0.05n−0; 0

0d d

n

n sZ
δ −=  and 0

0

1 e

d d

n

n sZ
µ δ= − + . 

3.1. The Single Solition Solution by Direct Integration 

From equation (25), we carry out two consecutive 

integrations under the conditions that 

1 0Φ = , 1 0
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∂
, 

2
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 for Φ → ∞ , equation (26) 

can be transformed as: 

22
2 2 4 1

1 1 2
( ) 0

2

Aa
Cb au Ba

ξ
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By integrating equation (27), we obtain a hyperbolic 

secant pulse in the form: 

2
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which is a single soliton wave solution of the KP, with the 

amplitude parameter 

2

2

3( )
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−Φ = , and the width 

parameter 
4

2

4a B
W

au Cb
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−
. In a 3D representation, the 

solitary wave solution of CKP equation in fuction of X, Y 

and τ  is given as 
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 (29) 

Figure 2 represents the time evolution of the 3D solitary 

wave solution in cylindrical geometry at two different time τ 

= 0 and τ = 0.03; We precise that when the value of τ 

increases, the amplitude and the width of the soliton remain 

unchanged as indicated in figure 2. 

 
Figure 3. Two dimensional representation of the electrostatic potential profile in 

cylindrical geometry for two different values of β: β = 1 (Solid line) and β = 3 

(Dashed line) (Figure 3a) for two differents values of σ: σ = 0.1 (Solid line) and σ 
= 0.8 (Dashed line) (Figure 3b), for two different values of Zd: Zd = 1 (Solid line) 

and Zd = 2 (Dashed line) (Figure 3c): for two different values of u. u=6 (Solid 

line) and u=8 (Dashed line) (Figure 3a). The others parameters used are: 
a=b=1; u=6 and u=8; s=1; Zd = 1 or Zd = −1; σ = 0.1 or σ = 0.5; nd0 = 0.05n−0; 

ne0 = 0.05n−0; 0

0d d

n

n sZ
δ −=  and 0

0

1 e

d d

n

n sZ
µ δ= − + . 

 
Figure 4. Variation of amplitude and width of solution in function of β for two 
differents values ofσ. σ = 0.01 (red line) and σ = 0.5 (blue line) (Figures 1a and 

1b) and in function of σ for two different values of β. beta = 3 (red line) and β = 5 

(blue line) (Figures 1c and 1d). The parameters used are: a=b=1; u=8; s=1; Zd 

= 1; nd0 = 0.05n−0; ne0 = 0.05n−0; 0

0d d

n

n sZ
δ −= ; 0

0

1 e

d d

n

n sZ
µ δ= − + . 

The figures 3 and 4 shows the effects of plasma parameters 

on the amplitude of the electrostatic potential Φm and the 

width (or spatial extension) W of the localized pulse 

respectively. In particular, the figure illustrate that the 

amplitude and width decrease as β (i.e. the ratio of 

temperature between the positive and negative ions). On the 

contrary, Φm and W increase with σ (i.e. ratio in temperature 

between the positive ions and electrons). Thus, the presences 

of charged dusts significantly affect the properties of solitons. 

3.2. Single and Multiple Solution Using Hirota Bilear 

Form 

To understand complex nonlinear phenomena in dusty 

plasma, many researchers focused on various types of soliton 

solution and their remarkable properties in many branches of 

physics including plasma physics. Among the analytical 

methods used in the resolution of nonlinear differential 

equations, we can name the bilinear method which consists in 

putting a differential equation in an integrable form called the 

bilinear form of Hirota [22-30]. Hirota bilinear method is a 

powerful tool for obtaining a wide class of exact solutions of 

some nonlinear equations. It is one of the most famous 

methods to construct multi-soliton solutions. The idea of this 

method is to construct a dependent variable transformation 

called Hirota transformation, also called the tau-function 

transformation, which transforms a nonlinear equation into a 

bilinear equation known as a Hirota bilinear equation [28]. 

The Hirota bilinear operator D is define as follow [22-27]: 
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The compact form of the Hirota derivative is given by: 
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[24, 25, 30]. The Hirota method introduces 

the auxillary function F which is the logarithmic 

transformation of Φ1. This transformation is constructed as 

follows [3, 19, 27] 
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Replacing equation (32) in equation (25), we obtain the 

following expression: 
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Then, making use of the definition of bilinear operator, we 

obtain the bilinear form of the KP equation given below: 

4 2( ) . 0,X X yD D BD CD F Fτ′ ′ ′+ + =                (34) 

which is in the form ( )( ) . 0P D F F =
 
with 
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4 2( ) ( )X X yP D D D BD CDτ′ ′ ′= + +  being a polynomial in the 

Hirota partial derivatives D. We impose the function F to take 

the following form 
2 3

1 2 31 ...F f f fε ε ε= + + + + , so that the 

multisoliton solutions can be obtained by finite perturbation 

around the vacuum (F = 1) [32]. The above scheme is 

generally applicable to any explicit bilinear operator 

expression. It can be shown that if the original partial 

differential equation admits N-soliton solution, then equation 

(34) will be truncated as n = N terms, provided F is the sum 

of precisely N simple exponential terms [25, 30]. Hence, this 

leads to: 

3.2.1. One Soliton Solution 

11F fε= +  and equation (34) is written as 

1 1( )[(1 ).(1 )] 0P D f fε ε+ + =                 (35) 

After some simplifications we obtain: 

2
1 1 1 1( ) 1.1 (1. .1) . 0P D f f f fε ε + + + =         (36) 

We can then deduce the following equation: 

4 2
1 1 1

4 2
0.

f f f
B C

X X Yτ
∂ ∂ ∂

+ + =
′ ′∂ ∂ ′ ′∂ ∂

                 (37) 

The solution of equation (37) can be found in the form 

[29-30]: 

1 ,f e
η=                                  (38) 

With η  in the form pX qYη τ′ ′ ′= + − Ω . Replacing 

equation (38) in equation (37), we obtain the dispersion 

relation 

2
3 q

Bp C
p

 
Ω = + 

  
                          (39) 

Thus, we obtain the following solution 

( )1 ,pX qYF e τ′ ′ ′+ −Ω= +                        (40) 

where we took ε = 1 without loss generality. Finally, the 

solution of CKP equation in cylindrical coordinate with 

variables X, Y, and τ  as 

2 2 2
2 3

1

3 1
sech

2 4

Bp Y q
p X qY Bp C

A C p

τ τ τ
     
 Φ = × − + − +              

 (41) 

The profile of this solution is identical to the one obtained 

in the case of the single soliton solution when N = 1, which is 

a particular case of multi solitonsolution. The figure 5 depict 

the time evolution of the one soliton solution. We observe 

that, as the value of τ  increases, the amplitude of wave 

remain unchange while the structure of the soliton changes 

from a line shape to a parabolic shape; many autors obtain 

the same result in others plasma models, the one dimensional 

geometry model cannot show such behavior [1, 19]. 

 
Figure 5. Three-dimensional representation of one soliton solution profile 

obtain from Hirota bilinear method at four different times τ  = 0.01(a); τ  = 

0.2(b); τ  = 0.5(c) and τ  = 1(d): The parameter used are: p = q = 1, s=1; 

Zd = 1; β = 1; σ = 0.01; nd0 = 0.05n−0; ne0 = 0.05n−0, 
0

0d d

n

n sZ
δ −=  and 

0

0

1 e

d d

n

n sZ
µ δ= − + . 

 
Figure 6. Three-dimensional representation of two solitons profile obtain 

from Hirota bilinear method at four different times τ  = 0.01(a); τ  = 

0.2(b); τ  = 0.5(c) and τ  = 1(d): The parameters used are: p1 = q1 = 8, p2 

= q1 = 10; s=1; Zd = 1; β = 1; σ = 0.01; nd0 = 0.05n−0; ne0 = 0.05n−0; 

0

0d d

n

n sZ
δ −= and 0

0

1 e

d d

n

n sZ
µ δ= − + . 

3.2.2. Two-Soliton Solutions 
2

1 21F f fε ε= + +  and the KP equation take the form 

( )( )2 2
1 2 1 2( ) 1 1 0P D f f f fε ε ε ε+ + + + =        (42) 

By making used properties of Hirota operators we can 

obtain the following equations 

P(D)(1.1)=0 ; 
1 1P(D)(1.f +f .1)=0;  2 1 1 2P(D)(1.f + f .f +f .1)=0  (43) 

Since we seek for two-soliton solution, we use the twoterm 

form of f1 with the ansatz f2 given respectively as: 

1 2
1f e e

η η= + and 1 2
2 12f a e

η η+=          (44) 

where 1 1 1 1p X q Yη τ′ ′ ′= + − Ω  and 2 2 2 2p X q Yη τ′ ′ ′= + − Ω . 
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a12 is a coupling constant given by: 

4 2
1 2 1 2 1 2 1 2 1 2

12 4 2
1 2 1 2 1 2 1 2 1 2

( ) ( )( ) ( ) ( )
.

( ) ( )( ) ( ) ( )
 

P p p B p p C q q
a

P p p B p p C q q

η η
η η

− Ω − Ω − + − + −
= − = −

+ Ω + Ω + + + + +
 (45) 

with ( ; ; )i i i ip qη = Ω [26]. 

In the context of our dusty plasma model the following 

dispersion relations are obtained as 

2
3 1

1 1

1

q
Bp C

p

 
Ω = + 

  

, 
2

3 2
2 2

2

q
Bp C

p

 
Ω = + 

  

         (46) 

Using the similar process in the case of one-soliton 

solution, i.e. 1 2 1 2
1 2 121 1F f f e e a e

η η η η+= + + = + + + , where 

we have taken ε = 1, the CPK two-soliton solution is finally 

obtain as 

( )
2

1 2

12 12
.X X X

X X

FF FB B
lnF

A A F

′ ′ ′
′ ′

 −
Φ = =   

 
         (47) 

Where F, FX’ and FX'X' are expressed as: 

1 2 1 2
121F e e a e

η η η η+= + + + , 

1 2 1 2
1 2 12 1 2( )XF p e p e a p p e

η η η η+
′ = + + +  and 

1 2 1 22 2 2
1 2 12 1 2( ) .X XF p e p e a p p e

η η η η+
′ ′ = + + +      (48) 

With

2

4

Y
X X

C

τ′ = − , Y Yτ′ = , and τ τ′ = . 

Figure 6 presents the three dimensional representation of 

the two-soliton solutions profiles in cylindrical coordinate 

propagating in the plasma model under consideration. like in 

one soliton case, the structure becomes a parabolic shape as 

the time increases.. 

3.2.3. Three-Solitons Solutions 

For the three-soliton solution, we chose: 

2 3
1 2 31 ,F f f fε ε ε= + + +                       (49) 

With 31 2
1f e e e

ηη η= + + , 1 3 2 31 2
2 12 13 23f a e a e a e

η η η ηη η + ++= + +
 

and 1 2 3
3 123f a e

η η η+ += , where, 1 1 1 1p X q Yη τ′ ′ ′= + − Ω , 

2 2 2 2p X q Yη τ′ ′ ′= + − Ω and 3 3 3 3p X q Yη τ′ ′ ′= + − Ω  

The coupling constant in this case are given as 

4 2
1 2 1 2 1 2 1 2 1 2

12 4 2
1 2 1 2 1 2 1 2 1 2

( ) ( )( ) ( ) ( )
,

( ) ( )( ) ( ) ( )

P p p B p p C q q
a

P p p B p p C q q

η η
η η

− Ω − Ω − + − + −
= − = −

+ Ω + Ω + + + + +
 (50) 

4 2
1 3 1 3 1 3 1 3 1 3

13 4 2
1 3 1 3 1 3 1 3 1 3

( ) ( )( ) ( ) ( )
,

( )
  

( )( ) ( ) ( )

P p p B p p C q q
a

P p p B p p C q q

η η
η η

− Ω − Ω − + − + −
= − = −

+ Ω + Ω + + + + +
 (51) 

4 2
2 3 2 3 2 3 2 3 2 3

23 4 2
2 3 2 3 2 3 2 3 2 3

( ) ( )( ) ( ) ( )
,

( ) ( )( ) ( ) ( )

P p p B p p C q q
a

P p p B p p C q q

η η
η η

− Ω − Ω − + − + −
= − = −

+ Ω + Ω + + + + +
 (52) 

And 123 12 13 23a = a a a                                (53) 

The parameters pi, qi and Ωi are required to satisfy the 

dispersion relation 
2

3 i
i i

i

q
Bp C

p

 
Ω = + 

  

. The auxiliary function F give: 

3 1 3 2 3 1 2 31 2 1 2
12 13 23 1231 ,F e e e a e a e a e a e

η η η η η η η ηη η η η + + + ++= + + + + + + +                                   (54) 

Where, again without loss of generality, we have set ε = 1. As in the previous cases, we replace F, FX’, FX’X’, X’, Y’ and 'τ  in 

the equation (32) to obtain three-soliton solution of CKP equation in this case, 

3 1 3 2 3 1 2 31 2 1 2

3 1 3 2 3 1 21 2 1 2

1 2 3 12 1 2 13 1 3 23 2 3 123 1 2 3

2 2 2 2 2 2 2
1 2 3 12 1 2 13 1 3 23 2 3 123 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

X

X X

F p e p e p e a p p e a p p e a p p e a p p p e

F p e p e p e a p p e a p p e a p p e a p p p e

η η η η η η η ηη η η η

η η η η η η η ηη η η η

+ + + ++
′

+ + + ++
′ ′

= + + + + + + + + + + +

= + + + + + + + + + + + 3

   (55) 

 
Figure 7. Two and three-dimensional representations of three solitons profile 

obtain from Hirota bilinear method at four different times τ  = 0.01(a); τ = 

0.2(b); τ  = 0.5(c) and τ = 1(d). The parameters used are: p1 = q1 = 8, p2 = 

q2 = 10; p3 = q3 = 12; s = 1; Zd = 1; β = 1; σ = 0.01; nd0 = 0.05n−0; ne0 = 

0.05n−0; 0

0d d

n

n sZ
δ −=  and 0

0

1 e

d d

n

n sZ
µ δ= − + .

 

Figure 7 illustrate the graphical profile representation in 

3D of the three soliton solution. It is worth noting that as the 

number of pulses increases, the amplitudes decrease, leading 

to the complete vanishing of the pulse. The behiavor of three 

soliton structure with the time is identical to previous case. 

Thus, for any N > 3, the N-soliton solutions can always be 

constructed in a similar way. However, the calculations 

become very lengthy. 

4. Stability Analysis of Solutions 

To analyze the stability of the solution, we introduce a 

small perturbation in the solution and study his evolution. 

Stability analysis is important for the understanding of the 

robustness of the solution when propagating [31]. In order to 

study the stability of the solution, we perturb the initial 

solution Φ1 of equation (26) and define a perturbed solution 

as: 
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1 10 11( ) ( ) ( ),ξ ξ ξΦ = Φ + Φε                  (56) 

where ε  is a small parameter that separates the soliton 

solution 10 ( )ξΦ  and the perturbation profile 11( )ξΦ . We 

introduce equation (56) into the reduce form of equation (27) 

to obtain the following equations at consecutive order of ε . 

At order 0
ε , we get 

2
2 10

10 10 2
0,L S T

ξ
∂ Φ

Φ + Φ + =
∂

               (57) 

at order 1
ε , 

2
11

11 10 11 2
2 0.L S T

ξ
∂ Φ

Φ + Φ Φ + =
∂

           (58) 

The soliton solution of equation (57) is in the form given 

by equation (28): 

2
10 ( )msech

W

ξΦ = Φ                     (59) 

Considering the reduced form of equation (27), this 

solution can be rewritten as: 

2
1

3

2 4

L L
sech

S T
ξ

 
Φ = − −  

 

, Where 2L Cb au= − , 

2

2

Aa
S =  

and 4T Ba= . 

By introducing this solution into equation (58) leads us to: 

2
2 211

112
4 12 ( ) 0,sechω ωξ

ξ
∂ Φ  + − + Φ = ∂

         (60) 

Where 
4

L

T
ω = − . By setting Y ωξ= , we have: 

2
211

112
4 12 ( ) 0sech Y

Y

∂ Φ  + − + Φ =
 ∂

             (61) 

Equation (61) represents the associate Legendre equation 

which solutions are eigen-vectors corresponding to Legendre 

Polynomials [32]. Thus the solution will be stable if and only 

if equation (61) is fulfilled. Recall that, the Legendre equation 

which has been widely studied is an eigenvalue problem and it 

possesses both discrete and continuous modes, all describing 

background modes of the localized solution Φ1. However here 

we are mainly interested in fields with a localized shape 

profile. In this respect we consider only boundstate modes of 

the eigenvalue equation (61), which correspond to wave 

functions of the discrete branch [32, 33]. Here, we aim at 

finding solution Φ11(Y) of equation (61), in which case the 

solution of the system will be stable. This background wave 

has seven distinct localized modes 11( )( 1,2,3, 4,5,6,7)
j

k jΦ =  

(see Appendix). Figure 8 below shows the variation of theses 

solutions who represent other profile that can be obtained in 

our plasma model. The propagation of the electrostatic 

potential is possible only in one of these modes, and is mainly 

specified by the physical conditions. Following this, the 

behaviour of dusty Pair-Ion-Electron is an excellent example 

for the generation of multisolitons, which is interesting in the 

sense that it can be used to explain the enlarged capacity of 

transport existing in plasma system. It is relevant to stress that 

the linear stability analysis provides a very efficient way of 

probing soliton stability, and particularly its shape invariance 

under translation. 

5. Conclusion 

Dusty plasmas are important for the understanding of 

many phenomena in various space plasma environments. It is 

also relevant to many laboratory and industrial plasmas 

applications, such as low-temperature and low-pressure 

discharges, as well as to the manufacturing of 

semiconductors. In the present work, we have derived the 

CKP equation from a dusty pair-ion-electron plasma model. 

The effects of plasma parameters on the coefficients of this 

equation were analyzed and the results clearly show that, 

charged dust particles in electron-ion plasma can be 

responsible for the appearance of new types of electrostatic 

waves including multi-solitary waves, depending on whether 

the dust grains are considered to be static or mobile. The 

linear stability analysis of the wave was also conducted and 

accordingly, we conclude that our soliton solutions are stable 

in the condition that they co-propagate with one of the eigen-

vectors mode of the Legendre associated equation of order 2. 

 
Figure 8. Two-dimensional representation of the wave profiles of seven 

bound states at timeτ  = 0.01. The other parameters used are: a = b = 1; u 

= 2; Zd = 1; β = 1; σ = 0.01; nd0 = 0.05n−0; ne0 = 0.05n−0; 0

0d d

n

n sZ
δ −=  

and 0

0

1 e

d d

n

n sZ
µ δ= − + . 
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Appendix 

Bound State Solution of Legendre Equation 

The seven localized modes of the Legendre equation are 

given by: 

1 1 2
11 0 0 0

3
( ( ) ) ( )

5
tanh Y Y tanh Y YΦ = Φ − − −  

2 2 2
11 0 0 0

3
( ( ) ) ( )

5
tanh Y Y sech Y YΦ = Φ − − −  

3 3 2
11 0 0 0

2
( ( ) ) ( )

5
tanh Y Y sech Y YΦ = Φ − − −  

4 4 2
11 0 0 0( ) ( )sech Y Y tanh Y YΦ = Φ − −  

5 5 2
11 0 0 0( ( ) 1) ( )tanh Y Y tanh Y YΦ = Φ − − −  

6 6 2
11 0 0 0( ( ) 1) ( )tanh Y Y sech Y Yφ φ= − − −  

7 7 2
11 0 0 0( ( ) 1) ( )tanh Y Y sech Y Yφ = Φ − − −  

where 0 ( )( 1,2,3,4,5,6,7)
j

k jΦ =  are their respective constant 

amplitudes. 
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