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Abstract: In this study, a magnetohydrodynamic Jeffrey-Hamel flow of a viscous, fluid that conducts electricity and is 

incompressible through a divergent conduit in presence of inclined variable magnetic field with heat and mass transfer has 

been investigated. The solutions of the governing equations of the MHD flow are obtained numerically since they are non-

linear. The numerical scheme used is implemented in a computer software program and the results presented in graphical form. 

The velocity profile, the temperature profiles, the effect of variable magnetic field and of varying various dimensionless 

numbers on the flow are analyzed. Jeffrey-Hamel flows are also applied in the diffuser development. Some of the systems 

include; the channel between the compressor and gas turbine engine burner, the canal at departure from a gas turbine linked to 

the jet pipe, the canal subsequent to the impellor of a centrifugal compressor, wind tunnels with closed circuits, and water 

turbine draft tubes among several others. The results provide significant information for the improvement of proficiency and 

performance of technologies in aerospace, chemical, civil, environmental, industrial and mechanical applications. 
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1. Introduction 

Magnetohydrodynamics (MHD) describes the intricate 

interaction between magnetic fields and plasmas that are 

accountable for considerable dynamic conduct in various 

cosmic matters including the sun. MHD is significant in 

planetary processes such as magneto-convection, magnetic 

flux occurrence, flux ropes, spots, atmospheric heating, wind 

acceleration, flares, and eruptions. Mass transfer is the 

transport of one constituent from a region of higher 

concentration to that of a lower concentration from a system 

that contains two or more components whose concentrations 

vary from point to point. Heat transfer rate depends on the 

systems temperature and the properties of the medium 

intervening through which the transfer of heat takes place. 

Two-dimensional steady motion of a viscous fluid through 

divergent-convergent channels which is referred to 

commonly to as the classical Jeffery-Hamel flow in fluid 

dynamics was first studied by Jeffery [1] and Hamel [2]. The 

flow models for Jeffery-Hamel flows are interesting and are 

used to demonstrate the phenomenon of boundary layers 

separation in divergent channels. Jeffrey and Hamel 

developed a solutions for the Navier-Stokes equation using 

the similarity concept that depended on two parameters that 

were non-dimensional which were the flow Reynolds number 

and the angle of the channels widths. The classical Jeffery-

Hamel problem was further analyzed by Axfold [3] studying 

the effects of the magnetic field that is external to the 

conducting fluid. He concluded that the magnetic field acted 

as a control parameter as well as the Reynolds number for the 

flow and the angle of the walls. The study [4] reduced the 

Maxwell’s electromagnetism governing equations and the 

Navier-Stokes equations to ordinary differential equations 

that were nonlinear for the model the problem of the Jeffery-

Hamel flow for a case where the magnetic field was high in 
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the presence of nanoparticles. The flow region in the channel 

that was divergent was studied with different values of 

Hartmann number and different values of the angle of 

channel and their results when matched with the exact 

solution obtained by Adomian’s Decomposition Method 

(ADM) were in agreement.[5] while studying the flow over 

convergent and divergent wall rib-lets conducted an 

experiment in the research laboratory of the High-Speed 

wind Tunnel of the Dresden University of Technology 

(Germany) to determine the velocity field over convergent 

and divergent rib-let patterns by hot-wire measurements in 

turbulent pipe flow. They concluded that adjacent to the wall 

of the channel, convergent and divergent rib-let patterns 

show considerable differences with regard to the time-

averaged stream-wise velocity and the stream-wise velocity 

fluctuations. If the rib-lets converge, the average time 

velocity decreased while velocity fluctuations increased with 

the opposite for divergent rib-let patterns. 

Magnetohydrodynamic flows which was an extension of the 

classical Jeffrey-Hamel flows in divergent and convergent 

channels Jeffery-Hamel flows to MHD interpreting the effect 

of the external magnetic field working as a parameter in the 

solution of the channel flows for the divergent and 

convergent channels was analyzed by the study [6]. MHD 

flows in convergent- divergent channels studies extended 

from the classical Jeffery-Hamel flows to the MHD studies 

done by the study [6] was studied by the study [7] 

introducing the method of Adomian decomposition and 

determining the Adomian’s polynomial. They obtained a 

solution for the problem for the case of divergent and the 

case of convergent channels concluding that the velocity 

distribution on the fluid flow and the shear stress constant is 

depicted at various Reynolds numbers. They compared their 

results with some earlier works which illustrated their 

excellent accuracy.[8] discussed slip and Joule heating effects 

in mixed convection peristaltic transport of nanofluid with 

Soret and Dufour effects.The study [9] considered 

blowing/suction effect on hydromagnetic heat transfer by 

mixed convection from an inclined continuously stretching 

surface with internal heat generation/absorption. The study 

[10] Examined double-diffusive convection in a porous 

enclosure with cooperating temperature and concentration 

gradients and heat generation or absorption effects.Unsteady 

MHD free convective visco-elastic fluid flow bounded by an 

infinite inclined porous plate with a heat source, viscous 

dissipation, and Ohmic heating was investigated by the study 

[11]. Motivated by the above investigations, in this work a 

fully developed free convective flow of a viscous 

incompressible electrically conducting fluid past a vertical 

porous plate bounded by a porous medium in the presence of 

thermal radiation, heat source/sink, variable suction, and 

variable permeability is analyzed. The study [12] studied the 

MHD boundary layer flow of a VISCO-Elastic fluid past a 

porous plate with varying suction and heat source/sink in the 

presence of thermal radiation and diffusion. They considered 

a case of a magnetic field whose strength was uniform and 

perpendicular to the plate with heat source. They concluded 

in this study that the presence of thermal radiation decreases 

the temperature, an opposite nature is shown in the case of 

Eckert number and the influence of the heat source leads to 

enhance the temperature. 

Jeffery-Hamel flows with heat transfer of nanofluids using 

the homotopy perturbation method and comparing with 

numerical results were studies by the study [13]. They 

considered the influence of nanoparticles on the nonlinear 

Jeffery-Hamel flow problem investigating three types of 

nanoparticles namely Copper, Alumina and Titania by 

considering water as a base fluid. They concluded that the 

effect of solid volume fraction of nanoparticles on the heat 

transfer and fluid flow parameters is more pronounced when 

compared with the type of nanoparticles and the skin friction 

coefficient and Nusselt number for alumina nanofluid is the 

highest in comparison to the other two nanoparticles. 

Analysis of heat and mass transfer for unsteady viscous 

MHD nanofluid flowing through a conduit whose walls are 

permeable in presence of metal nanoparticles was done by 

[14]. They considered two cases for effective thermal 

conductivity through the H-C model and concluded that the 

permeability of the conduit increased shear stress at lower 

wall. Heat transfer rate increases with the increase of the 

Reynolds number and Mass transfer rate decreases with the 

increase of Reynolds number thermal boundary layer 

thickness is a decreasing function when injection/suction 

happens altogether on HTP. 

A Jeffery-Hamel flow of non-Newtonian Micropolar 

incompressible fluid inside non-parallel walls and notices 

heat transfer effect in flow region was studied by the study 

[15]. They converted the governing nonlinear PDEs to 

nonlinear coupled ODEs using appropriate similarity 

transformations and solved them with the utilization of the 

Taylor optimization method based on differential evolution 

(DE) algorithm. They concluded from their results that the 

fluid velocity was decreased, although the angular velocity of 

micro constituents and heat transfer in the flow was increased 

as enlarging the values of the vortex viscosity parameter 

associated with the divergent channel. It also noticed that 

both spin-gradient viscosity and micro-inertia density 

enhance the micro rotation profiles and their results agreed 

with the results obtained by the fourth-order Runge-Kutta 

method. 

Magnetohydrodynamics Jeffery-Hamel flow with heat 

transfer problem in an Eyring-Powell fluid using differential 

transform method was studied by the study [16] where they 

analyzed the variations of velocity profiles for different 

values of the Reynolds number, Eckert number, Prandtl 

number and Hartmann number in the flow with heat transfer 

with the fluid in both divergent and convergent channels and 

concluded that the nanofluid flow velocity profile increases 

as the value of the Eckert number and the Prandtl number 

increases and decreases as the value of the Hartmann number 

increases, on the contrary, the heat profile fluid flow also 

increases. They also deduced that the velocity profile of 

Jeffrey Hamel nano-fluid flow decreases as the value of 

Reynolds number increases. 



 Applied and Computational Mathematics 2020; 9(4): 108-117 110 

 

More recently, The study [17] studied the unsteady two-

dimensional Jeffery-Hamel flow of an incompressible non-

Newtonian fluid, with nonlinear viscosity and skin friction, 

flowing through a divergent channel in the presence of a 

magnetic field in the direction perpendicular to the motion of 

the fluid. They noted that when the Reynolds number and 

Hartmann number was increased, the velocity of the fluid 

increased. However, when the unsteadiness parameter was 

increased, the velocity of the fluid decreased and was a 

constant when the values of the Eckert number and the 

Prandtl number were increased. The temperature of the fluid 

increased when the Reynolds, Hartmann, Prandtl and Eckert 

number were increased with the same case for the 

unsteadiness parameter. 

2. Mathematical Formulation 

The analysis of unsteady Jeffrey Hamel MHD flows 

between porous walls with injection or suction where there is 

a magnetic field that is oblique with heat and mass transfer 

has not been extensively analyzed. This research is focused 

on a 2D unsteady Jeffrey Hamel MHD incompressible 

viscous fluid that conducts electricity flowing from a source 

at the connection between two porous walls with a case 

where there is injection / suction with an inclined magnetic 

field that is variable, with the walls at an angle 2α as in figure 

1. If α >0, the walls are convergent and divergent if α <0. 

The walls are considered to be rigid. The velocity of the fluid 

is considered to be along the radial direction. The magnetic 

field is inclined at an angle of β as shown in the geometrical 

model illustration of the problem in figure 1. 

 

Figure 1. Geometrical illustration. 

The total angle between the walls is θ such that 

α θ α− ≤ ≤  and 2θ α= . The suction velocity or the 

injection velocity is a constant 0u .T∞  and wT  where wT T∞ >  

are the free stream and wall temperatures respectively while 

C∞  and wC  are the free stream and concentrations at walls 

with wC C∞ < . 

3. Governing Equations 

In cylindrical coordinate system, the general equations for 

the flow is given by 
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∂
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Using the Maxwell equations to obtain the Lorentz force 

by using ×J B . The total electric field J  from the Ohms law 

is given by 

( )σ= ×J V B                                (7) 

The velocity of the fluid and the magnetic field resulting 

from the induction are given by ˆˆ ˆcos 0 0
r

r zu θθ + +V = , and 

( ) ( ) ˆˆ ˆ
r

H - Hsin r+ H + Hcos +0zθ θβ βB = respectively. 

With the flow purely along the r and θ  directions and 

considering no changes in the z direction and applying 

Boussinesq approximation, taking into account Joule heating 

and viscous dissipation for a case of no chemical reaction, 

the specific equations of the flow are obtained as; 
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Obtaining the difference of the differentiated equation (9) w.r.t θ̂  and multiplied equation (10) by r̂ and differentiated w.r.t 

r̂ the momentum equation is obtained in cylindrical form. 
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Equations (8), (11), (12), (13), (14) and (15) are specific 

equations governing the flow. 

Introducing the unsteadiness parameter and the wedge 

angle parameter 
1

m

m

d

dtr

δ δλ
ν −=  and 

1

m

m
α π=

+
 

respectively to account for unsteadiness and the wedge angle 

size from studies done by the studies [15, 16, 19, 20, 22], and 

[23] where δ is a function of t  is a time-dependent length 

scale whereas the parameter m  is linked to angle of the 

wedge together with wedge radius. 

4. Numerical Solution 

Similarity transformation is applied in reducing the 

governing equations to ordinary differential equations that 

are further reduced to degree one before applying the 

collocation method. 

From research work done by the studies [15, 16, 19], and 

other scholars, the following transformations are used. 
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Applying the transformations on the governing equations, 

the following ordinary differential equations are obtained; 
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Applying the following dimensionless numbers 
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to equation (20), (21), (22) and (23) and rearranging the equations. 
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1
e 1

1
R . .m

c cm

m
r S r Sφ φ λ φ

δ
+

+
+′′ ′= −                                                             (26) 

2

1

1
sin

1m m m
am

e e e

R Rm
r H

R R

σγ λ γ γ η θ
µδ υ

+
+

 +′′ −  
 

= +                                                    (27) 

Equations (24-27), are the ODEs prevailing the fluid flow. 

Transforming the conditions on the boundary by the same similarity transforms; 

For 0θ = ,
1

(0)
mu r

Q
η δ +∞= − 0uθ = , (0) 0ψ = , (0) 0φ =  

Forθ α= ± , ( ) 0η α± = , 0u uθ = ,
1( ) mψ α δ +± = , 

1(0) mφ δ +=                                         (28) 

Equations (24-27) are reduced to ODEs of order one and solved. Letting 

1x η= , 2 x η ′= , 3x η ′′= , 4x ψ= , 5x ψ ′= , 6x φ= , 7x φ ′= , 8x γ= , 9x γ ′=                               (29) 
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Getting the derivatives of (29) 

1 2x x′ =                                                                                       (30) 

2 3x x′ =                                                                                       (31) 

( ) ( )
1 1

2 2
3 3 1 1 2 1 2 1 2 ( ) ( ) 21 1

1
2 5 sin cos 1 ( )

m m

e e a a r T r Cm m

ru
x R x x rR x x x x H x H x G G m x i

Q r

θδ δη θ θ ω φ λ
δ

+ +

+ +
′ ′′′= + + + − − − + − − − +=   (3

2) 

4 5x x′ =                                                                                      (33) 

( )
2 2

1 2 1 2 2 2 2
5 4 5 1 2 2 11 1 2 1 1

21 1 1 1
. 4 cos ( )

m m
r r e r c rm m m m

r u rum
x r P x P R x P E x x x Q P J x ii

QQ

θ θψ λ δ θ
δ δ δ δ

+ +
+ + + +

 +′ ′′= = − + − + + + − 
  

   (3

4) 

6 7x x′ =                                                                                     (35) 

1
7 e 7 61

1
R . . ( )m
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m
x r S x r S x iiiφ λ

δ
+

+
+′ ′′= = −                                                     (36) 

8 9x x′ =                                                                                     (37) 

2
9 8 8 11

1
sin ( )

1m m m
am

e e e

R Rm
x r x x H x iv

R R

σγ λ θ
µδ υ

+
+

 +′ ′′= −  
 

= +                                   (38) 

A general form of vectors is used to represent equations 

(29-35) 

( , )x F xθ′ =                               (39) 

With vectors 

1
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x

x

x

x x

x

x

x

x
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 
 
 
 
 
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2
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5

7

9

( )

( )

( )

( )

x

x

i

y

F ii

x

iii

x

iv

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

              (40) 

The collocation method together with the implicit Runge-

Kutta method inbuilt in MATLAB as a function known as the 

bvp4c is used to solve equations (39). 

5. Results and Discussion 

The following graphs illustrate the effects of several flow 

parameters and variables. 

 

Figure 2. Temperature profiles for different values of the suction parameter. 

 

Figure 3. Temperature profiles for different values of the injection 

parameter. 
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Figure 4. Concentration profiles for different values of the Schmidt number. 

 

Figure 5. Temperature profiles for different values of the Eckert number. 

 

Figure 6. Magnetic Induction profiles for different values of the Grashof 

Concentration number. 

 

Figure 7. Temperature profiles for different values of the Grashof 

Concentration number. 

 

Figure 8. Velocity profiles for different values of the Grashof Concentration 

number. 

 

Figure 9. Velocity profiles for different values of the Grashof Temperature 

number. 

 

Figure 10. Temperature profiles for different values of the Grashof 

Temperature number. 

 

Figure 11. Magnetic Induction profiles for different values of the Grashof 

Temperature number. 
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Figure 12. Temperature profiles for different values of the Hartmann 

number. 

 

Figure 13. Concentration profiles for different values of the Unsteadiness 

Parameter. 

 

Figure 14. Temperature profiles for different values of the wedge angle 

Parameter. 

 

Figure 15. Concentration profiles for different values of the wedge angle 

Parameter. 

 

Figure 16. Temperature profiles for different values of the Prandtl. 

 

Figure 17. Graph of Magnetic induction profiles while varying Reynold 

Magnetic number. 

 

Figure 18. Temperature profiles for different values of Unsteadiness 

Parameter. 

From figure 2, temperature increased with the increasing 

the suction parameter. Suction increases the velocity of the 

fluid which in turn leads to increased kinetic energy which 

leads to increase in temperature due to conversion of kinetic 

energy to thermal energy. For figure 3, temperature falls as 

injection parameter increases. Injection results in reduction of 

the fluid velocity as a result of the boundary layer thickening 

in turn reducing kinetic energy lowering its conversion to 

thermal energy thus reducing fluid temperature. 

Concentration of the fluid decreases with the increase in the 

Reynolds number as observed from figure 4. This can be 

alluded to the fact that as the Reynolds number increases, the 

fluid temperature increases which in turn leads to a decrease 
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in the concentration. An increase in temperature leads to 

increased kinetic energy in the fluid leading to increased 

vibrations of the molecules of the fluid hence an increase in 

the distance or spaces between molecules resulting in low 

concentration. From the graph in figure 5, as the Eckert 

number is increased, the temperature also increases. 

Increasing Eckert number leads to a rise in the kinetic energy 

leading to increased vibration of the molecules which results 

in conversion of kinetic energy to heat energy hence increase 

in temperature. From figure 6, increasing Grashof 

concentration number, magnetic induction increases. This is 

because increasing Grashof concentration number causes the 

viscous forces to reduce thus increasing the fluid velocity 

thus increasing magnetic induction. Temperature increased 

with Grashof concentration number increased form figure 7. 

Grashof concentration number increasing, leads to a 

reduction in the viscous forces and meanwhile with viscosity 

and temperature inversely associated, a decrease in the 

viscous forces results in temperature increase. Increasing the 

Grashof concentration number as in figure 8, the fluid 

velocity increased. The viscous forces decreased with the 

increase in the Grashof concentration number reducing the 

consequence of the drag force in the fluid hence increased 

velocities. The velocity increases with the increase in the 

Grashof Temperature number as shown in figure 9. As the 

Grashof Temperature number increases, the effect of the 

viscous drag on the fluid reduces hence the velocity increase. 

Increasing the Grashof temperature number leads to 

increasing temperature. As the Grashof Temperature number 

increases, the viscous drag decreases leading to temperature 

increase. The magnetic induction increases with the increase 

in the Grashof Temperature number as shown in figure 11. 

As Grashof Temperature number increases, the viscous drag 

decreases which result is increased velocities hence magnetic 

induction is increased. In figure 12, increasing the Hartman 

number led to increased temperature. With the Hartmann 

number increasing, viscous drag decreases and with an 

inverse relation for temperature and viscosity, there is 

increase in temperature. From figure 13, the concentration 

increases with increasing the unsteadiness parameter. As the 

unsteadiness parameter increases, the boundary wall thickens 

which results in the increase in concentration since the 

concentration at the wall is greater than the concentration 

away from the wall hence an increase in the concentration 

parameter. From figure 14, the temperature decreases with 

the decrease in the wedge angle parameter m , which 

decreases the wedge angleα . For various mvalues, i.e. 

01
0.5, 60

2 3
m

πα= = = = ,
01

0.33..., 45
3 4

m
πα= = = = ,

01
0.25, 36

4 5
m

πα= = = = , 
01

0.2, 30
5 6

m
πα= = = = . As 

the wedge angle decreases, boundary layer effect becomes 

more pronounced in between the divergent walls and since

w
T T∞< , the temperature decreases from T∞ to 

w
T . The fluid 

concentration decreases with reduction in wedge angle α as 

shown in figure 15. As the wedge angle decreases, boundary 

layer effect becomes prominent in the region of the flow with 

the walls moving towards the center line and since 
w

C C∞>

with the concentration of wall greater than the concentration 

at the centerline. As the wedge angle decreases, the velocity 

of the fluid increases hence reduced concentration from 

figure 16, the temperature increased with the Prandtl number 

increase. With Prandtl number increased, viscous forces 

effects dominates the fluid flow and since viscosity and 

temperature are inversely related, an increase in the viscous 

forces led to decreased temperature. 

From the graph on figure 17, the magnetic induction 

increases with increasing Reynolds magnetic number. There 

is increase in the velocity of the fluid with increasing 

Reynolds magnetic number resulting in increased interactions 

between the fluid and the magnetic field hence increasing 

magnetic induction. 

Temperature decreases with the increasing unsteadiness 

parameter as observed from the graph on figure 18. As the 

unsteadiness parameter increases, boundary layer thickens 

and since the wall temperature is less than the free stream 

temperature,
w

T T∞< , the effect of the wall increases in the 

flow region hence decrease in the temperature. 

6. Conclusion 

The unsteady Jeffrey-Hamel flow in the presence of the 

inclined magnetic field with suction and injection has been 

investigated and the effect of various parameters discussed. 

In conclusion, the temperature increases with the increase in 

the suction parameter, Eckert number, Grashof Temperature 

number, Hartmann number, wedge angle, and the Prandtl 

number but decreases with the increase in the injection 

parameter. The concentration of the fluid increases with the 

increase in the unsteadiness parameter and the wedge angle 

parameter while it decreases with the increase in the 

Reynolds number. Magnetic induction and velocity increase 

with the increase in the Grashof temperature and 

concentration numbers. The temperature decreases with time 

while the magnetic induction increases with the increase in 

the magnetic Reynolds number. 

Nomenclature 

ρ  The density of the fluid 

r  Radius of channel 

θ  The angle of the channel 

α  Half angle of the channel 

H  Inclined Magnetic field 

,ru uθ  Velocity along r ,θ  direction 

β  Inclination angle of magnetic field 

T  Temperature 
t  Time 

Φ  Viscous dissipation function 

H  Induced Magnetic field 

B  Total magnetic field 
µ  Dynamic viscosity 

K  Thermal diffusivity 
σ  Electrical conductivity 
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Pr  Prandtl number 

Re  Reynold number 

mR  Reynold magnetic number 

Ec  Eckert number 

J  Joule heating parameter 

Ha  Hartmann number 

( )r CG  Grashof number for Concentration 

( )r TG  Grashof number for Temperature 
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